

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS CURSO DE GRADUAÇÃO EM QUÍMICA

SEMESTRE 2022.1

PLANO DE ENSINO

I. IDENTIFICAC	ÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA		Nº DE HORAS-AULA SEMANAIS TOTAL DE HORAS-AULA SEMESTRAIS	
		TEÓRICA	PRÁTICA	
QMC 5223	Química Orgânica Teórica B	S	S	72 horas/aula
		04	00	
	HOI	RÁRIO		
TURMAS TEÓRICAS		TURMAS PRÁTICAS		
Turma 4003				
	HORÁRIO DE ATENDI	MENTO AO E	STUDANTE	

Profa. Adriana P Gerola

Quarta-feira 13:30 às 15:10h e sexta-feira 13:30 às 15:10h

II. PROFESSOR (ES) MINISTRANTE (S)

1. Adriana Passarella Gerola (e-mail: adriana.gerola@ufsc.br)

Horário de atendimento: Segunda-feira (13:30 às 15:30h), e quinta-feira (9:00 às 11h). Local: sala 313 ou remoto, a combinar com os estudantes.

III. PRÉ-REQUISITO(S)

CÓDIGO	NOME DA DISCIPLINA
1. QMC 5222	Química Orgânica Teórica A

IV. CURSO (S) PARA O QUAL(IS) A DISCIPLINA É OFERECIDA

Curso de Graduação em Química Bacharelado

V. EMENTA

Haletos de alquila. Substituição nucleofílica SN1 e SN2, aspectos cinéticos e estereoquímicos. Efeito de solvente em reações orgânicas. Reagentes organometálicos e aplicações em síntese. Álcoois: obtenção, reações e mecanismos. Éteres. Aldeídos e cetonas. Adição nucleofílica à carbonila. Ácidos carboxílicos e seus derivados: sais, ésteres, haletos de acila, anidridos, reatividade e mecanismos. Aminas e sais de diazônio e suas aplicações em síntese. Enóis, enolatos e análogos. Compostos heterocíclicos.

VI. OBJETIVOS

Apresentar os conceitos fundamentais de alguma das principais funções orgânicas (por exemplo: haletos de alquila, álcoois, éteres, ácidos carboxílicos, aldeídos, cetonas) quanto a métodos de obtenção, usos, principais reações e aplicações em síntese.

VII. CONTEÚDO PROGRAMÁTICO

- II. Haletos de Alquila Nomenclatura, Métodos de obtenção e preparação. Reações de substituição nucleofílica SN1 e SN2 Cinética e mecanismo. Reações de eliminação E1 e E2 . Eliminação vs Substituição. Efeito do solvente.
- III. Compostos organometálicos Nomenclatura, métodos de preparação, propriedades químicas. Aplicações em síntese orgânica. Obtenção de hidrocarbonetos, álcoois e compostos carbonilados
- IV. Álcoois Nomenclatura. Preparação e propriedades físicas e químicas. Fonte industrial, principais usos e aplicações. Principais reações: desidratação, reação com haleto de hidrogênio, formação de alquil sulfonatos, oxidação. Síntese de álcoois superiores.

- **V. Éteres** Nomenclatura. Preparação e propriedades físicas e químicas. Fonte industrial. Usos e aplicações. Preparação, propriedades e reatividade de oxiranos.
- VI. Aldeídos e Cetonas Nomenclatura. Preparação e propriedades físicas e químicas. Equilíbrio ceto-enólico. Principais usos e aplicações. Reações de adição nucleofílica ao carbono carbonílico (AdN); Reações de oxirredução.
- VII. Ácidos Carboxílicos Nomenclatura. Preparação e propriedades físicas e químicas. Principais usos e aplicações. Sais de ácido carboxílico ionização e constante de acidez. Reações de redução.
- VIII. Derivados Funcionais de Ácidos Carboxílicos cloretos de ácido, anidridos, amidas, ésteres e lactonas. Preparação e propriedades físicas e químicas. Reações de substituição nucleofílica acílica. Reações de redução.
- IX. Aminas Nomenclatura. Preparação e propriedades físicas e químicas. Principais usos e aplicações. Degradação de Hoffman. Reações, basicidade e formação de sais, alquilação, conversão em amidas, substituição eletrofílica em aminas aromáticas. Sais de diazônio. Preparação e reações: reação de Sandmeye.
- X. Reações de metilenos ativos Acidez de compostos carbonílicos contendo hidrogênio alfa. Métodos de formação de ligação carbono-carbono: alquilação na posição alfa, síntese pelos ésteres malônico, acetoacético. Condensação aldólica.
- **XI. Heterociclos** Introdução à nomenclatura, estrutura e reatividade. Basicidade de heterociclos nitrogenados.

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A disciplina será ministrada através de aulas presenciais, contando com aulas em Datashow e quadro branco. Serão indicados questões teóricas, e problemas que visem a aplicação dos conceitos e postulados apresentados nas aulas expositivas. Estas indicações estarão também insertas na bibliografia recomendada e caberá ao aluno resgatá-las. O objetivo é que o aluno manuseie e trabalhe com a bibliografia indicada. Serão feitas aulas especiais de resolução coletiva de exercícios. Também serão apresentados exercícios-desafios e temas-de-casa, ambos válidos para cômputos de nota de avaliação. A busca e interpretação de artigos científicos atuais que abordem tópicos do conteúdo programático será incentivada. Atividades Assíncronas no ambiente MOODLE: Várias atividades serão realizadas neste ambiente (moodle.ufsc.br), incluindo exercícios online, vídeos interativos, entre outros.

Todos os alunos regularmente matriculados estão automaticamente inscritos no ambiente.

IX. METODOLOGIA DE AVALIAÇÃO

A Avaliação segue o REGULAMENTO DOS CURSOS DE GRADUAÇÃO, Capítulo IV,

Artigos 69 a 74. O aluno deverá construir seu desempenho, a fim de obter aprovação, nota mínima seis e 75% de comparecimento ao longo do curso. A presença em aula será sempre aferida. A nota final da disciplina (SCORE) consiste na média notas de avaliações previstas neste plano, descritas abaixo:

- a) **DESEMPENHO:** Três PROVAS: P1, P2, P3 Estas provas serão feitas presencialmente, nos horários de aula do cronograma de provas (**peso 8**).
- **b) PARTICIPAÇÃO:** correspondendo à média entre os itens: Exercícios & Atividades Pontuados, frequência e pontualidade (**peso 2**).

Considerações Importantes:

De acordo com a Resolução 17/CUn/97 – Capitulo IV – Seção I – Artigo 72 – A nota mínima de aprovação em cada disciplina é 6,0 (seis vírgula zero).

De acordo com a Resolução 17/CUn/97 – Capítulo IV – Seção I – Artigo 70 – § 40 – Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero).

De acordo com a Resolução 17/CUn/97 – Capítulo IV – Seção I – Artigo 74. O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 2 (dois) dias úteis.

REVISÃO DA AVALIAÇÃO

Segundo a Resolução 017/CUn/97 em seu Art. 73, é facultado ao aluno requerer ao Chefe do Departamento a revisão da avaliação, mediante justificativa circunstanciada dentro de 02 (dois) dias úteis, após a divulgação do resultado. "

X. NOVA AVALIAÇÃO

Neste item deve ser especificada a existência ou não de nova avaliação no final do semestre (<u>recuperação</u>), conforme estabelece a Resolução 17/CUn/97 (Art. 70 § 20).

Art. 70 § 20 - O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 (três) e 5,5(cinco vírgula cinco) terá direito a uma nova avaliação no final do semestre, exceto nas disciplinas que envolvam Estágio Curricular, Prática de Ensino e Trabalho de Conclusão do Curso ou equivalente, ou disciplinas de caráter prático que envolvam atividades de laboratório ou clínica definidas pelo Departamento e homologados pelo Colegiado de Curso, para as quais a possibilidade de nova avaliação ficará a critério do respectivo Colegiado do Curso.

Art. 71 - § 3º - O aluno enquadrado no caso previsto pelo § 2º do art. 70 terá sua nota final calculada através da média aritmética entre a média das notas das avaliações parciais e a nota obtida na avaliação estabelecida no citado parágrafo.

XI. CRONOGRAMA*

Experimental:

DATA	ASSUNTO	HORÁRIO
3/04 5/04	Semana de Integração acadêmica de graduação	
20/04	Unidade I Haletos de Alquila – Substituição Nucleofílica	13:30 às 15:10h
22/04	Unidade I Haletos de Alquila – Substituição Nucleofílica (revisão)	13:30 às 15:10h
27/04	Unidade I Haletos de Alquila – reações de eliminação	13:30 às 15:10h
29/04	Unidade I Haletos de Alquila – substituição x eliminação	13:30 às 15:10h
04/05 06/05	Unidade I Haletos de Alquila – exercícios	13:30 às 15:10h
11/05	Unidade II Compostos organometálicos	13:30 às 15:10h
13/05	Unidade III Álcoois	13:30 às 15:10h
18/05	Prova 1	

20/05	Unidade IV Éteres	13:30 às 15:10h
25/05 27/05	Unidade V Aldeídos e Cetonas	13:30 às 15:10h
01/06	Unidade VI Ácidos carboxílicos	13:30 às 15:10h

03/06	Aula de exercícios	13:30 às 15:10h
08/06	Unidade VII Derivados Funcionais de Ácidos Carboxílicos	13:30 às 15:10h
10/06 15/06	Aula de exercícios	13:30 às 15:10h
17/06	Prova 2	13:30 às 15:10h
22/06 24/06	Unidade VIII Aminas	13:30 às 15:10h
29/06 01/07	Unidade IX	13:30 às 15:10h
06/07	Unidade X Heterociclos	13:30 às 15:10h
08/07 13/07 15/07	Exercícios	13:30 às 15:10h
20/07	Prova 3	13:30 às 15:10h
-0/01		

XII. BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA BÁSICA DA DISCIPLINA (as bibliografias serão fornecidas via moodle no decorrer do semestre).

- 1. BRUICE, Paula Y. Química Orgânica. Vol. 1 e 2, 4º Ed. São Paulo: Pearson Prentice Hall, 2006
- 2. McMURRY, John. Química Orgânica. vol. 1 e 2, 60 Ed. São Paulo: Pioneira Thomson Learning, 2005.
- 3. CLAYDEN, Jonathan. Organic chemistry, Oxford: Oxford University Press, 2001.

XIII. BIBLIOGRAFIA COMPLEMENTAR

- 1. CAREY, Francis A. Química orgânica. Vol. 1 e 2, 7o ed. Porto Alegre (RS): AMGH, 2011. v. ISBN 9780073047877 (v.1).
- 2. SOLOMONS, T. W. G. Química Orgânica, vol. 1 e 2, 8º Ed. Rio de Janeiro: Livros Técnicos e Científicos, 2005
- 3. SILVERSTEIN, R. M. Identificação espectroscópica de compostos orgânicos. 6 ed. Rio de Janeiro: LTC, 2001.
- 4. ALLINGER, N. & ALLINGER, J. Estrutura de Moléculas Orgânicas, Ed. E. Blucker, 1978.
- 5. CAMPOS, M.M, AMARAL, L. Fundamentos de Química Orgânica. São Paulo: Edgar Blucher: Ed. Da USP, 1980.

Prof.	Ass. Chefe do Depto.