

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS

Coordenadoria do Curso de Graduação em Química

Campus Universitário Reitor João David Ferreira Lima - Trindade CEP 88040.900 -Florianópolis SC Fone: (48) 3721-6853/2312

PLANO DE ENSINO SEMESTRE - 2022.1

I. IDENTIFI	CAÇÃO DA DISCIPLINA:				
CÓDIGO	IOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-AULA SEMESTRAIS
			TEÓRICAS	PRÁTICAS*	SEMESTRAIS
QMC5241	Química Orgânica Tecnológica I	03227	04	00	72

II. PROFESSOR(ES) MINISTRANTE(S)

Prof. Josiel Barbosa Domingos

III. PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA		
QMC 5519	Química Geral II		

IV CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Química Tecnológica

V. EMENTA

Fundamentos: estrutura, ligações, isomeria de compostos orgânicos. Efeitos eletrônicos. Estereoquímica. Hidrocarbonetos, propriedades químicas e físicas, obtenção e reatividade. Carvão e petróleo. Ressonância e aromaticidade. Espectroscopia no ultravioleta-visível. Espectroscopia no Infravermelho.

VI. OBJETIVOS

GERAL: Dar uma visão ampla de química orgânica e as principais classes dos compostos orgânicos.

ESPECÍFICOS:

- Discutir os compostos orgânicos no que se refere a: Nomenclatura; Aspectos estruturais; Relação entre estrutura, propriedades físicas e reatividade;
- Aplicar idéias básicas de isomeria e estereoquímica aos compostos orgânicos;
- Aplicar os conhecimentos teóricos básicos na análise e discussão dos mecanismos das reações das diferentes classes de compostos orgânicos, bem como prever possíveis alternativas mecanísticas;
- Aplicar idéias básicas de espectroscopia de IV e UV-vis à compostos orgânicos.

VII. CONTEÚDO PROGRAMÁTICO

1. ESTRUTURA E LIGAÇÃO

Introdução à Química Orgânica. Estrutura atômica: orbitais e configuração eletrônica. Ligação química: iônica e covalente. Teoria da Ligação de Valência. Hibridização: Orbitais sp^3 e a estrutura do metano; Orbitais sp^2 e a estrutura do Acetileno. Hibridização do Nitrogênio e Oxigênio. Teoria dos orbitais moleculares.

2. LIGAÇÕES COVALENTES POLARES; ÁCIDOS E BASES

Ligação covalente polar: Eletronegatividade e Momento dipolar. Cargas formais. Ressonância: Representação Gráfica das Formas de Ressonância. Ácidos e Bases: definição de Bronsted-Lowry e o valor do pK_a ; definição de Lewis. Representação das estruturas químicas. Modelos Moleculares.

3. COMPOSTOS ORGÂNICOS: ALCANOS E CICLOALCANOS

Grupos Funcionais. Alcanos e Cicloalcanos: Nomenclatura. Estrutura dos alcanos: análise conformacional. Propriedades físicas e as forças intermoleculares. Ocorrência. Isomeria *cis-trans* em cicloalcanos. Conformação e estabilidade dos anéis: análise conformacional.

4. UMA VISÃO GERAL SOBRE AS REAÇÕES ORGÂNICAS

Tipos de reações orgânicas. Reações radicalares e como ocorrem. Reações polares e como ocorrem. Descrição de uma reação: Velocidade e equilíbrio. Energia de dissociação das ligações. Diagramas de energia, estado de transição e intermediários.

5. ALCENOS: ESTRUTURA E REATIVIDADE

Nomenclatura. Ocorrência e obtenção industrial. Estrutura. Isomeria geométrica e nomenclatura *E* e *Z*. Propriedades físicas. Estabilidade dos alcenos. Reações de Adição Eletrofílica: Regra de Markovnikov e estabilidade de carbocátions.

6. ALCENOS E DIENOS: REAÇÕES E SÍNTESE

Preparação dos alcenos: reações de eliminação. Reações dos alcenos: Adição de halogênios; Formação de haloidrinas;

hidratação de alcenos; redução e oxidação; Adição via radical livre; polimerização. Espectroscopia na região do ultravioleta-visível. Sistemas conjugados.

7. ALCINOS

Estrutura, nomenclatura e propriedades físicas. Propriedades químicas: Reação de adição eletrofílica. Acidez de alcinos: formação do íon acetileto.

8. ESPECTROSCOPIA NA REGIÃO DO INFRAVERMELHO

Interação energia-amostra. Modos de vibração. O espectro de IV: regiões características; deformações axiais; deformações angulares; grupos funcionais.

9. ESTEREOQUÍMICA

Enantiômeros e carbono tetraédrico. Atividade ótica. Diastereoisômeros. Compostos meso. Projeção de Fischer. Configuração *R* e *S*. Moléculas com mais de 2 centros estereogênicos.

10. BENZENO E AROMATICIDADE

Fontes de hidrocarbonetos aromáticos. Nomenclatura. Estrutura do benzeno. Estabilidade do benzeno. Aromaticidade. Propriedades químicas: Substituição aromática eletrofílica. Reações de substituição dos derivados do benzeno. Outros compostos aromáticos. Aromáticos polinucleares.

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aulas expositivas com auxílio de quadro negro e projetores. Exercícios resolvidos em sala de aula e lista de exercícios extraclasse para melhor compreensão da disciplina.

IX. METODOLOGIA DE AVALIAÇÃO

A nota final será a média aritmética de 4 provas aplicadas durante o semestre.

X. NOVA AVALIAÇÃO

O aluno que faltar alguma avaliação por motivo de saúde terá o direito de fazer a prova mediante pedido de avaliação à Chefia do Departamento de Química com apresentação do atestado médico dentro do prazo de 3 (três) dias úteis após a realização da mesma (Art. 74 da Resolução no 017/CUn/97 − UFSC). Essa avaliação de reposição será realizada no final do semestre com o conteúdo correspondente a prova que será reposta. (2) O aluno com frequência suficiente (FS = ≥75%) e média das avaliações do semestre entre 3,0 (três) e 5,5 (cinco vírgula cinco) terá direito a uma nova avaliação (recuperação) ao final do semestre, abrangendo todo o conteúdo programático. A nota final será a média aritmética da média das notas das avaliações parciais e a nota obtida na nova avaliação.

XI. CRONOGRAMA				
Data	Conteúdo	H/A		
19/4 a 5/5	Tópicos 1 e 2	15		
10/5	Prova 1	2		
12/5 a 26/5	Tópicos 3 e 4	15		
31/5	Prova 2	2		
2/6 a 23/6	Tópicos 5, 6, 7 e 8	15		
28/6	Prova 3	2		
30/6 a 21/7	Tópicos 9 e 10	15		
26/7	Prova 4	2		
28/7	Nova avaliação (Reposição)	2		
2/8	Recuperação	2		

XII. BIBLIOGRAFIA BÁSICA

- 1. BRUICE, Paula Y. Química Orgânica. Vol. 1 e 2, 4º Ed. São Paulo: Pearson Prentice Hall, 2006. Número de Chamada BU UFSC: 547 B892q 4.ed.
- 2. McMURRY, John. Química Orgânica. vol. 1 e 2, 6° Ed. São Paulo: Pioneira Thomson Learning, 2005. Número de Chamada BU UFSC: 547 M168q
- 3. CLAYDEN, Jonathan. Organic chemistry, Oxford: Oxford University Press, 2001. Número de Chamada BU UFSC: 547 O68 ou 547 C619o 2.ed.

XIII. BIBLIOGRAFIA COMPLEMENTAR

- 1. CAREY, Francis A. Química orgânica. Vol. 1 e 2, 7° ed. Porto Alegre (RS): AMGH, 2011. v. ISBN 9780073047877 (v.1). Número de Chamada BU UFSC: 547 C273q 7. ed.
- 2. SOLOMONS, T. W. G. Química Orgânica, vol. 1 e 2, 8º Ed. Rio de Janeiro: Livros Técnicos e Científicos, 2005. Número de Chamada BU UFSC: 547 S689q 8.ed.
- 3. SILVERSTEIN, R. M. Identificação espectroscópica de compostos orgânicos. 6 ed. Rio de Janeiro: LTC, 2001. Número de Chamada BU UFSC: 543.42 S587i
- 4. WEISSERMEL, Klaus; ARPE, Hans-Jurgen. **Industrial organic chemistry**. 4th. ed. compl. e rev. Weinheim: VCH, 2003. Número de Chamada BU UFSC: 547 W433i
- 5. LACORTE, Carlos Gini. Quimica industrial: industrias organicas.. Buenos Aires: El Ateneo, 1945. 608 p. : il. Número de Chamada BU UFSC: 66.02 G277q

Assinatura do Professor	Assinatura do Chefe do Departamer	
Aprovado no Coleg	giado do Curso de Química	
Em:		