

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS

Coordenadoria do Curso de Graduação em Química

Campus Universitário Reitor João David Ferreira Lima - Trindade CEP 88040.900 -Florianópolis SC

Fone: (48) 3721-6853/2312

E-mail: quimica@contato.ufsc.br - http://quimica.ufsc.br/

PLANO DE ENSINO SEMESTRE - 2022.2

I. IDENTIFICAÇÃO DA DISCIPLINA:						
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-	
			TEÓRICAS	PRÁTICAS	AULA SEMESTRAIS	
QMC 5236	Métodos Sintéticos em Química Orgânica	06003A	0	4	72	

I.1. HORÁRIO	
TURMAS TEÓRICAS	TURMAS PRÁTICAS
-	213304- LAB 107

II. PROFESSOR MINISTRANTE		
Prof. Marcus Mandolesi Sá	marcus.sa@ufsc.br	

III. PRÉ-REQUISITOS			
CÓDIGO	NOME DA DISCIPLINA		
QMC 5216	Análise Orgânica Teórica		
QMC 5234	Análise Orgânica Experimental		

IV. CURSO PARA O QUAL A DISCIPLINA É OFERECIDA				
Curso de Graduação em Química				

V. EMENTA

As aulas experimentais versarão sobre os conteúdos dos programas das disciplinas Química Orgânica Teórica A e B, Química Orgânica Experimental e Análise Orgânica Teórica e Experimental (QMC5222, QMC5223, QMC5230, QMC5216 e QMC5234, respectivamente).

VI. OBJETIVOS

A disciplina *Métodos Sintéticos em Química Orgânica* deverá induzir os alunos a buscarem na literatura as experiências a serem realizadas dentro dos temas abordados nas disciplinas teóricas indicadas na ementa acima. Ao professor cabe orientar e discutir com os alunos a conveniência de determinado trabalho. É importante que os alunos realizem a identificação de todos os passos de uma preparação, preferencialmente através de métodos espectrométricos.

As preparações envolvendo múltiplas etapas devem ser incentivadas e adotadas sempre que possível.

A elaboração e execução de projetos de interesse acadêmico e científico deverão preencher 40-60% do tempo dedicado ao curso.

VII. CONTEÚDO PROGRAMÁTICO

1. Química de Compostos Carbonilados:

Reações de adição à carbonila, condensação aldólica, preparação de iminas, redução de compostos carbonilados, oxidação de álcoois.

2. Reações de Formação de Ligação Carbono-Carbono:

Friedel-Crafts, Wittig, Heck, Reformatsky, Knoevenagel, Biginelli, Reações de Enolatos e Enaminas.

3. Transformações de Grupos Funcionais:

Reações de Substituição Nucleofílica, Substituição Eletrofílica Aromática, Esterificação, Hidrólise, Reduções, Oxidações.

4. Novas Metodologias em Síntese Orgânica:

Catálise Heterogênea, Biocatálise, Reações na ausência de solventes, Reações em meio aquoso, Química Verde.

5. Métodos de Purificação e Caracterização:

Recristalização, Destilação, Cromatografia, Ensaios Colorimétricos, Infravermelho, Ponto de Fusão, Ressonância Magnética Nuclear de Hidrogênio.

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- 1- As seis primeiras semanas de aula serão dedicadas para preparações envolvendo diversas etapas. Todos os alunos (divididos em grupos de até três componentes) deverão executar as preparações.
- 2- Após o término de cada conjunto de experimento, os alunos deverão entregar um relatório completo envolvendo o trabalho experimental realizado.
- 3- Após o primeiro conjunto de experimentos será feita uma Prova Teórica, abrangendo os conteúdos destas práticas.
- 4- As semanas seguintes serão dedicadas ao planejamento dos Projetos de Pesquisa e ao seu desenvolvimento pelos grupos de alunos.
- 5- No final, os alunos farão a segunda Prova Teórica e apresentarão o Seminário e o relatório referente ao tema desenvolvido.
- 6- No início de cada aula, o aluno deverá entregar um pré-teste relacionado ao conteúdo que será desenvolvido na aula experimental, conforme informações detalhadas que serão apresentadas previamente ao alunos.

IX. METODOLOGIA DE AVALIAÇÃO

A nota final do aluno será calculada com base em:

- Duas provas escritas (P1 e P2), envolvendo o conteúdo das aulas: 60%

Testes (T): 20%Relatórios (R): 10%Seminários (S): 10%

Nota Final (NF): 0.3*P1 + 0.3*P2 + 0.2*T + 0.1*R + 0.1*S

- Cada um dos componentes acima receberá uma nota que varia de 0 a 10.
- De acordo com a Resolução 17/CUn/97, Capitulo IV, Seção I, Artigo 72: "A nota mínima de aprovação em cada disciplina é 6,0 (seis vírgula zero)."

Observações:

- O relatório deve seguir o modelo proposto pelo professor e pode ser digitado ou escrito a caneta.
- Ao aluno com falta em experimento será atribuída nota zero no relatório e pré-teste correspondentes.
- O aluno que faltar em alguma prova escrita por motivo de saúde deverá realizar pedido de nova avaliação à Chefia do Departamento de Química com apresentação do atestado médico dentro do prazo de 3 dias úteis após a realização da mesma (Art. 74 Res. 017/CUn/91 – UFSC). Essa nova avaliação será realizada no final do semestre e envolverá o conteúdo correspondente à avaliação que estará sendo reposta.
- Será obrigatória a frequência às atividades da disciplina, ficando sujeito à reprovação o aluno que não comparecer, no mínimo, a 75% (setenta e cinco por cento) das mesmas (Art. 69 Res 017/Cun/91).
- O horário de atendimento individual será combinado em sala de aula e consta do PAAD.

X. NOVA AVALIAÇÃO

Não haverá recuperação, de acordo com o Art. 70, § 2°, da Resolução nº 017/CUn/97 (Regulamento dos Cursos de Graduação da UFSC).

XI. CRONOGRAMA 1. CRONOGRAMA PRÁTICO:			
Data	Total de aulas: 18 semanas. Aulas práticas: 72 h. Conteúdo: Abordagem dos tópicos elencados abaixo (um cronograma detalhado do semestre será apresentado no início da primeira aula)	H/A 72	
Ago-Set Set-Out 17/Out Out-Nov Nov-Dez 12/Dez	I) Biorredução de beta-ceto ésteres e ensaios colorimétricos II) Descarboxilação oxidativa de aminoácidos com ácido tricloroisocianúrico (TCCA) Prova-1 (conteúdos I e II) III) Reação multicomponente de Mannich : síntese de beta-aminoésteres IV) Reações de formação de ligação C=C: síntese de ácidos cinâmicos Prova-2 (conteúdos III e IV)		

XII. BIBLIOGRAFIA BÁSICA (deve conter no mínimo 3 títulos, sendo 1 exemplar de cada título para cada 5 alunos disponível no sistema de Bibliotecas da UFSC)

- 1. Vogel, A. I. *A Textbook of Practical Organic Chemistry* 3rd ed; Longmann; Londres; 1978.
- 2. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. *Introduction to Organic Laboratory Techniques* 3rd ed; Saunders; New York; 1988.
- 3. Mohrig, J. R.; Hammond, C. N.; Morrill, T. C.; Neckers, D. C. *Experimental Organic Chemistry* W. H. Freeman and Company; New York; 1998.
- 4. Shriner, R. L.; Fuson, R. C.; Curtin, D. Y.; Morril, T. C. *The Systematic Identification of Organic Compounds* 6th ed; John Wiley & Sons; Singapure; 1980.

XIII. BIBLIOGRAFIA COMPLEMENTAR (deve conter no mínimo 5 títulos, com pelo menos 2 exemplares de cada título disponíveis no sistema de Bibliotecas da UFSC ou com acesso virtual)

- 1. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. *Identificação Espectrométrica de Compostos Orgânicos*. 7ª Ed; Rio de Janeiro: LTC, c2006.
- 2. Clayden, J. Organic chemistry. Oxford: Oxford University Press, 2001.
- 3. Obras de referência e periódicos indexados (*Organic Letters, Journal of Organic Chemistry, Synthesis, Synlett, Tetrahedron, Tetrahedron Letters* etc.).

Marcus Mandolesi Sá		Assinatura do Chefe do Departamento		
	Aprovado no Colegiad	o do Curso d	e Química	
	Em: /	/		