

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE QUÍMICA

Campus Universitário-Trindade - 88040-900 - Florianópolis - SC - Brasil Fone: (048) 3721-6852 - Fax: +55 48 3721 6852 - E-mail: secretar@qmc.ufsc.br

DISCIPLINA: Química Inorgânica Teórica II

CÓDIGO: QMC 5131

CARGA HORÁRIA: 54 HORAS/AULA

EMENTA

Introdução à química de coordenação. Teoria do campo cristalino e do campo ligante. Teoria dos orbitais moleculares. Simetria molecular. Operações de simetria. Grupos pontuais. Isomeria. Estudo de equilíbrio dos complexos. Estrutura e reatividade de compostos de metais de transição. Mecanismo de reações inorgânicas. Química bio-inorgânica.

PROGRAMA

- 1. Simetria Introdução a teoria de grupo
 - Elementos de simetria Grupos de ponto.
 - Operações de simetria Representações irredutíveis.
 - Representação de Mülliken A, E, T, ...
 - Redução de caracteres.
- 2. Teoria do campo cristalino e campo ligante
 - Simetria octaédrica.
 - EECC.
 - Magnitude de Δ o, energia de emparelhamento.
 - Simetria tetraédrica.
 - Simetria tetragonal: complexos quadrado planares.
 - Fatores que afetam a magnitude de Δ .
 - Série espectroquímica.
- 3. Teoria do orbital molecular (TOM)
 - Introdução: magnetismo das moléculas
 - TOM de complexos octaédricos
 - Ligantes π ácidos e básicos Uso de simetria na identificação dos grupos de orbitais ligantes (GOL) envolvidos em ligações δ (sigma) e π (pi)
 - Ligações δ e π (diagramas de OM)
 - Microestados (termo símbolo de estado fundamental)

- Diagrama de Orgel
- Transições eletrônicos em Complexos octraédricos.

Regras de seleção

Diagramas de Tanabe-Sugano (uso de simetria)

Espectros eletrônicos: atribuições às transições; determinação de ∆o e B'.

- Distorção tetragonal a partir de complexos octaédricos:

Efeito de ligantes quelantes

Substituição de ligantes

Efeito Jahn - Teller

4. Isomeria

- Estereoisomerismo
 - Geométrico: cis/trans; fac/mer
 - Ótico: enantiômeros, diastereoisômeros
 - Propriedades físicas
 - Rotação ótica
 - Configuração absoluta (Λ e Δ)
 - Conformação do anel quelato (λ e δ)
- 5. Equilíbrio em Complexos
 - Labilidade e inércia
 - Estabilidade e instabilidade
 - Efeito quelato
- 6. Introdução a mecanismos de reações de substituição em Complexos octraédricos
 - Associativo (A) e dissociativo (D)
 - Introdução a reatividade complexos lábeis/inertes (VB)
- 7. Introdução a Química bioinorgânica
 - Elementos essenciais em sistemas biológicos
 - Metaloenzimas: mioglobina, hemoglobina, etc.

BIBLIOGRAFIA:

- COTTON, F.A., WILKINSON, G. e GAUS, P.L., "Basic Inorganic Chemistry", John Wiley & Sons, 3^a ed., 1995.
- COTTON, F.A. e WILKINSON, G., "Advanced Inorganic Chemistry", John Wiley & Sons, 5^a ed., 1988.
- SHRIVER, D.F., ATKINS, P.W. e SANGFORD, C.H., Inorganic Chemistry Oxford, 3ª Edição. 1999. (LIVRO TEXTO)
- HUHEEY, J.E., KEITER, E.A. e KEITER, R>I>, Inorganic Chemistry à Principles of Structure and Reactivity, 4^a ed., Harper Colliuns, 1993.